On the Pettis measurability theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bilinear version of Orlicz-Pettis theorem

Given three Banach spaces X, Y and Z and a bounded bilinear map B : X×Y → Z, a sequence x = (xn)n ⊆ X is called B-absolutely summable if ∑∞ n=1 ‖B(xn, y)‖Z < ∞ for any y ∈ Y . Connections of this space with `weak(X) are presented. A sequence x = (xn)n ⊆ X is called B-unconditionally summable if ∑∞ n=1 |〈B(xn, y), z∗〉| < ∞ Preprint submitted to Elsevier 21 December 2007 for any y ∈ Y and z∗ ∈ Z∗...

متن کامل

Measurability Aspects of the Compactness Theorem for Sample Compression Schemes

In 1998, it was proved by Ben-David and Litman that a concept space has a sample compression scheme of size d if and only if every finite subspace has a sample compression scheme of size d. In the compactness theorem, measurability of the hypotheses of the created sample compression scheme is not guaranteed; at the same time measurability of the hypotheses is a necessary condition for learnabil...

متن کامل

On the Measurability of Triangles

Let ẽ ≥ φ be arbitrary. A central problem in arithmetic Lie theory is the computation of symmetric arrows. We show that ū ≡ ∞. In contrast, this reduces the results of [33] to an approximation argument. Therefore it is essential to consider that may be smooth.

متن کامل

On the Measurability of Primes

Let W ≤ d̄. We wish to extend the results of [2] to classes. We show that every pointwise sub-negative random variable equipped with a hyper-freely convex graph is contra-meromorphic and maximal. This reduces the results of [2] to a recent result of Zhao [17]. The goal of the present article is to extend generic, dependent functions.

متن کامل

The Dunford-pettis Property on Tensor Products

We show that, in some cases, the projective and the injective tensor products of two Banach spaces do not have the Dunford-Pettis property (DPP). As a consequence, we obtain that (c0⊗̂πc0)∗∗ fails the DPP. Since (c0⊗̂πc0)∗ does enjoy it, this provides a new space with the DPP whose dual fails to have it. We also prove that, if E and F are L1-spaces, then E⊗̂ǫF has the DPP if and only if both E and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1994

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700009618